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Within the frame work of classic electromagnetic theory, a general electrical boundary condition describing
the induced-charge electrokinetic phenomena at the liquid-dielectric interface is proposed in the present study.
Two well-known limiting cases, i.e., perfectly insulating and perfectly polarizable wall boundary conditions,
can be recovered from the present electrical boundary condition. By utilizing the proposed boundary condition,
the induced-charge electro-osmosis �ICEO� flow in an infinitely long microchannel patterned with two sym-
metric polarizable dielectric blocks is investigated analytically. Fourier transform method is invoked to solve a
biharmonic equation, which governs the �ICEO� flow field described by the stream function. Dimensionless
parameters are introduced, and their effects on flow characteristics are analyzed. It is found that an increase in
polarizability of the dielectric block enhances the slip velocity on its surface and thus induces a pair of
counter-rotating vortices. Also, increasing the natural zeta potential on the upstream and downstream of the
insulating microchannel walls leads to extinction of the vortex near the upstream insulating microchannel and
suppression of the vortex near the downstream insulating microchannel.
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I. INTRODUCTION

Electrokinetics, including electro-osmosis, electrophore-
sis, and dielectrophoresis, plays an important role in manipu-
lation of liquid flow and particles in microfluidic contexts.
General description of electrokinetic flows in microfluidic
channels with thin electric double layer �EDL� utilizes a slip
velocity approximate approach to avoid the need of solving
the detailed profiles of the EDL potential and fluid velocity.
Such slip velocity can be described by the Helmholtz-
Smoluchowski equation �Vs=−��E /��, which is associated
with the electric permittivity � and dynamic viscosity � of
the liquid, the applied local electric field E, and the zeta
potential of the channel wall �, thereby providing an appro-
priate boundary condition for the hydrodynamic problems in
microfluidics. For a uniform prescribed zeta potential, the
resulting flow is irrotational �1�. Nonetheless, the preceding
description is adequate for perfectly insulating channel sur-
faces that usually bear natural electric charges �or natural
zeta potential�. On the other hand, electrokinetic flows can
also be generated around a conducting body. Such flows,
however, are driven by induced electrical charges due to
electrical polarization mechanisms under effect of applied
electric field. Although the induced electric charges are also
situated on the surface of conducting objects, they are not the
result of any physicochemical mechanisms �e.g., natural zeta
potential�, but rather a simple consequence of the Gauss law.
Moreover, these charges distribute over the conductor sur-
faces so as to assure zero electric field in conductor interior.
The resulting dependence of the surface charge density �and
consequently the � potential� upon externally applied field
strength gives rise to a nonlinear Helmholtz-Smoluchowski

relation for the slip velocity. Flows driven by this induced
electrokinetic mechanism, engendered by both dc and ac ex-
ternal fields, were initially discussed mainly among the col-
loid community in the Ukrainian literature �2–4�. Recently,
Squires and Bazant �5� revisited the induced-charge electro-
kinetics and explored its relation to widely studied nonlinear
electrokinetic phenomena, e.g., ac electro-osmosis �6,7�.
Squires and Bazant �5� coined the terms “induced-charge
electro-osmosis” �ICEO� and “induced-charge electrophore-
sis” �ICEP� to respectively describe the associated fluid and
particle motion. They also suggested using ICEO generated
by conducting elements of asymmetric shapes to perform a
variety of microfluidic operations, such as pumping, mixing,
and particle manipulations. Experimental verifications of
these ICEO and ICEP effects were recently reported �8–10�.

Numerous studies have been reported on the application
of induced-charge electrokinetic �ICEK� phenomena in mi-
crofluidics. Bazant and Ben �11� proposed some new design
principles for periodic three-dimensional ac electro-osmotic
pumps based on the concept of ICEO, one of the most effec-
tive is the creation of fluid conveyor belt of ICEO flow over
a stepped electrode array. Yariv �12� theoretically analyzed
the ICEP motion of nonspherical particles, and found that
nonspherical particles may translate and/or rotate in response
to an imposed electric field, even if the net electric charges
on particles vanish. Saintillan et al. �13� reported a study of
the behavior of dispersed conducting slender rods in an elec-
tric field. In particular, they showed that the nonlinear
induced-charge electrophoretic motion can be modeled by a
linear slip velocity along the rod axes, which causes the
alignment of the rods in the direction of the electric field and
induces linear distributions of point-force singularities.
These distributions of point forces drive stresslet disturbance
flows in the surrounding fluid, resulting in hydrodynamic
interactions. Leinweber et al. �14� realized a continuous mi-
crofluidic demixing process which utilizes high external
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electrical fields that are applied over electrically floating
noble metal electrodes. It is shown that a homogeneously
concentrated electrolyte was successfully separated into arbi-
trarily shaped laminae of increased and depleted concentra-
tions by this microfluidic demixer. Harnett et al. �15� de-
signed a mixer for microfluidic sample preparation, where
ICEO is adopted to create microvortices in a fluidic micro-
channel by application of an alternating current electric field.
It is demonstrated that their proposed mixing scheme does
not suffer from sample dilution, and thus preserves detection
sensitivity. Wu and Li �16� proposed a correction method to
estimate the induced zeta potential on conducting surfaces.
They further conducted both experimental and numerical
studies of the mixing enhancement in a polydimethylsiloxane
�PDMS� microchannel with aid of ICEO generated by pat-
terned platinum conducting hurdles.

Above cited analyses of ICEO or ICEP mostly focus on
perfectly conducting surfaces or particles. The only excep-
tional case is the study reported by Squires and Bazant �5�
who considered reduction in induced zeta potential due to a
thin dielectric coating on a conducting cylinder. However,
they assumed that the electric field strength does not vary
inside the thin dielectric coating. Of more general interest,
solid objects cannot be treated as either perfectly conducting
or completely insulating �17�. When dealing with electroki-
netic phenomena on a solid object surface with finite dielec-
tric constant �rather than a perfectly conducting or com-
pletely insulating object surface�, electrical potential
distributions inside such polarizable dielectric object should
be taken into account, and thus an extra electrical boundary
condition at the liquid-dielectric surface is needed. Therefore
the present work aims at generalizing the electrical boundary
condition for the ICEK phenomena at liquid-solid interfaces.
Theoretically, such derived electric boundary condition pre-
sented in this study can be applicable within the entire range
of dielectric constant; namely the dielectric constant of ma-
terials spans from zero to infinity. It will be demonstrated
that the insulating electrical boundary condition for classical
fixed-charged electrokinetics and the perfectly conducting
electrical boundary condition used in aforementioned studies
on ICEK phenomena can be considered as two limiting cases
of the present general formulation. Furthermore, with aid of
the proposed electrical boundary condition, the ICEO flows
over two symmetric polarizable dielectric blocks embedded
in the walls of a microchannel driven by a dc electric field
will be analyzed. The ICEO flow field will be obtained ana-
lytically by solving a biharmonic that governs the stream
function to satisfy the Stokes equation. Finally, the effects of
the dielectric constant of the polarizable dielectric block and
the natural zeta potential of the insulating channel walls on
such ICEO flow will be examined.

II. INDUCED ZETA POTENTIAL ON A POLARIZABLE
SURFACE OF DIELECTRIC BLOCKS

A. General electrical boundary condition on a polarizable
dielectric-liquid interface

To illustrate the process of generating the induced charges
at a liquid-dielectric surface in ICEK phenomena, we can

envisage a simple case: a dielectric object of arbitrary shape
with a polarizable surface immersed in an aqueous solution
as shown in Fig. 1�a�. When an electric field is applied over
the object, the object surface is polarized with acuminated
negative charges facing toward the anode of the electric field
and an equal amount of positive charges facing toward the
cathode of the electric field. Such induced charges on the
solid side of the polarizable object surface interact with the
ions of the solution to form a screening cloud �i.e., EDL�
adjacent to the surface, which in turn causes the electric field
lines to be expelled and the ionic flux into the charge cloud
to be reduced. At the steady state, once the dipolar induced
double layer is formed, the externally applied field exerts a
body force on the ions in the screening cloud in the liquid,
driving the ions and thus the liquid into motion �see Fig.
1�b��. It should be pointed out here that the following deri-
vations are based on two assumptions �5�: �i� the surface
conduction is negligible compared to the bulk conduction of
the electrolyte. This is true for the cases of small Dukhin
numbers where the EDL is thin and no electrochemical reac-
tion occurs at the dielectric-liquid interface. �ii� The induced
zeta potential is small so that the Debye-Hückel linear ap-
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FIG. 1. �Color online� Schematic diagram illustrating the
mechanisms of the ICEO. �a� Steady-state electric field distributions
around a polarizable dielectric object immersed in an electrolyte
solution, where the charge distributions on the surface of the object
are due to the polarization of the dielectric block, and the charges
inside the EDL are due to the corresponding Coulombic interac-
tions. �b� Steady-state stream lines of ICEO flow driven by the
Smoluchowski velocities �Vs� on the surfaced of the polarizable
dielectric block.
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proximation is applicable. With these assumptions, Fig. 1�a�
illustrates that under the steady state, the polarizable object
behaves like an insulator because an induced dipolar double
layer around the polarizable surface is formed and the nor-
mal component of electric field does not inject ions into the
EDL anymore. This steady-state electrostatic configuration is
equivalent to the no-flux electrostatic boundary condition as-
sumed in conventional electrokinetic analysis. In the absence
of electrical conductivity gradient in the bulk, the externally
applied electric potential outside the EDL at this steady state
is governed by Laplace’s equation, which is expressed as

�2� f = 0, �1�

with an insulating boundary condition specified at the outer
edge of the EDL �the detailed boundary structure is shown in
Fig. 2�,

n · �� f�n=�D
= 0, �2�

where n represents a unit vector along n axis �i.e., perpen-
dicular to the polarizable dielectric surface�, and �D is the
Debye screening length that is related to properties of a sym-
metric electrolyte �z :z� solution through in

�D =��0� fkBT

2n0e2z2 ,

where e is the fundamental charge, z is the valence of the
electrolyte ions, n0 is the bulk number concentration of the
electrolyte, kB is the Boltzmann constant, and T is the abso-
lute temperature of the electrolyte solution. This Debye
screening length is normally referred to as the EDL thickness
�18�. The EDL is typically nanometers in size, which is why
the thin EDL assumptions is usually invoked �and in most
cases justified� in microfluidics.

Following Squires and Bazant �19�, we also define the
induced zeta potential as the potential difference between the
potential of fluid at the outer edge of the EDL and the po-
tential on the polarizable dielectric surface. Recall that the
potential in the fluid domain is governed by Eqs. �1� and �2�.
The potential inside the polarizable dielectric body is also
governed by Laplace’s equation,

�2�d = 0. �3�

It is noted that before the external electric field is imposed,
there already exists natural surface charges of density qd0 on

the dielectric surface. Then the normal component of the
electric displacement across the dielectric surface is not con-
tinuous, instead with a step jump by amount of qd0 �20�,

�0� fn · ��EDL�n=0 − �0�dn · ��d�n=0 = − qd0, �4�

where �0 is the permittivity of vacuum and has a value of
8.854�10−12 F /m, and � f and �d are, respectively, the di-
electric constants of the liquid and the dielectric block. �EDL
represents the potential inside the EDL, and it matches the
bulk potential � f at the outer edge of the EDL through
�EDL �n=�D

=� f �n=�D
and n ·��EDL �n=�D

=n ·�� f �n=�D
. Inside

the EDL, the potential is governed by Poisson’s equation,

�2�EDL = −
	e

�0� f
, �5�

where 	e is the net charge density inside the EDL. Then with
an assumption of thin EDL, the EDL can be approximated as
a local planer geometry as shown in Fig. 2, and hence Eq. �5�
is reduced to

�0� f
�2�EDL

�n2 = − 	e. �6�

Integrating Eq. �6� from the polarizable dielectric surface to
the outer edge of the EDL, we can write

�0� f�
0

�D �2�EDL

�n2 dn = − �
0

�D

	edn . �7�

Note that the upper limit of the integration, n=�D physically
represents the outer edge of the EDL. The right-hand side of
Eq. �7� gives the total amount of charges stored in the EDL
capacitor, which can be related to the potential drop across
the EDL, � f �n=�D

−�d �n=0, the thickness of the EDL, �D, and
the electric permittivity of the fluid, �0� f. For the left-hand
side of Eq. �7�, it is easy to show that ��EDL /�n vanishes at
the outer edge of the EDL. Hence, based on Eq. �7�, the
electric displacement at the fluid-solid interface on the fluid
side can be approximated as

�0� fn · ��EDL�n=0 = �0� f

� f�n=�D
− �d�n=0

�D
�8�

which represents the amount of charges �including both natu-
ral and induced parts� stored in the EDL capacitor near a
polarizable dielectric surface when the potential drop across
the EDL is small �21�. These charges induce same amount of
opposite surface charges on the dielectric block, which are
responsible for the ICEK phenomena.

Utilizing Eqs. �4� and �8�, we can obtain a boundary con-
dition of Robin type for the potential distribution inside the
polarizable dielectric object,

�d�n=0 + �D
�d

� f
n · ��d�n=0 = � f�n=�D

+ �d0, �9�

where �d0 is the zeta potential corresponding to natural sur-
face charges qd0, and is related to qd0 by �5�

� � � � � � � � � � � � � � � �

0f�� �n�

fluid

f�

EDL D�

d�

0freesurfacechargedensity dqdielectric block

n
EDL�

FIG. 2. Schematic diagram for the electric boundary condition
for the induced-charge electrokinetic phenomena at the interface
between an electrolyte solution and a polarizable dielectric object.
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�d0 =
�Dqd0

�0� f
. �10�

Through the boundary condition �9�, the potential inside the
polarizable dielectric object and the potential in the bulk
fluid domain �namely outside the EDL� are coupled together,
and thus the potential inside the dielectric object can be ob-
tained by solving Eq. �3� since the electrical potential distri-
bution in the bulk fluid domain has already been determined
by Eqs. �1� and �2�. Finally, the total zeta potential can be
found as the difference between the potential at the outer
edge of the EDL and the potential on the dielectric object
surface, and it takes the following form �19�:

�d = �d�n=0 − � f�n=�D
= − �D

�d

� f
n · ��d�n=0 + �d0. �11�

Besides the conventional zeta potential �d0 due to natural
charges on the dielectric surface, it is revealed by Eq. �11�
that an extra zeta potential �di=−�D�dn ·��d �n=0 /� f is in-
duced due to the presence of external electric field. Obvi-
ously, the induced zeta potential �di is no longer a constant,
instead it varies with local electric field strength at the polar-
izable dielectric object surface.

The proposed electric boundary condition shown in Eq.
�11� is general because two important limiting cases can be
obtained from it. For the case of insulating surfaces �i.e.,
�d→0�, the electric boundary condition for conventional
electrokinetic flows can be recovered when the induced part
of the zeta potential �di drops off and only the natural zeta
potential �d0 remains. On the other hand, when an object has
excellent electric conductibility �i.e., �d→
�, a perfect con-
ductor should have equipotential, that is, �d=�d0. Utilizing
Eq. �9�, we can show that the induced zeta potential is just
the opposite potential outside the edge of the EDL layer in
the liquid domain, i.e., −� f �n=�D

; this is consistent with
Squires and Bazant’s analysis for perfectly polarizable sur-
faces �i.e., �d→
� �5�.

B. Induced zeta potential on the surface of two polarizable
dielectric blocks embedded in the wall of a slit

microchannel

Consider an electrolyte solution in a parallel-plate slit
channel of height 2H as shown in Fig. 3. Two symmetric
polarizable dielectric blocks are embedded in the microchan-
nel walls, and they have an arbitrary dielectric constant �d
and geometric dimensions of aH�bH �where a and b, re-
spectively, are length and height scale factors of the polariz-
able dielectric block with respect to the half height H of the
channel�. Once in contact with electrolyte solution, the po-
larizable dielectric surface is charged with a uniform natural
zeta potential �d0. The rest of the channel wall is electrically
insulating and also has a uniform natural zeta potential �0.
With the thin EDL approximation, the electric field in the
fluid domain is one dimensional, i.e., E=E0ex, which gives a
linear profile of the applied electrical potential in the bulk
fluid domain, � f =−E0x+C �here C is a constant�. Due to
symmetry, analyses of both the electric problem and the flow
problem in the next section are restricted in the lower half of

the channel domain. Hence, to determine the induced zeta
potential on the dielectric surface, we need to know the elec-
trical potential distributions inside the dielectric block. Since
there is no free charge inside the dielectric block, the electric
potential in the dielectric block domain is governed by
Laplace’s equation

�2�d = 0. �12�

The appropriate boundary conditions are specified as

�d�y=0�+
�d

� f
�D

��d

�y
�

y=0
= − E0x + �d0, �13a�

� ��d

�y
�

y=−bH

= 0 � ��d

�x
�

x=−aH/2
= 0 � ��d

�x
�

x=aH/2
= 0.

�13b�

Defining the following nondimensional groups:

�̄d =
�d

E0H
�̄d0 =

�d0

E0H
x̄ =

x

H
ȳ =

y

H
, �14�

we can nondimensionalize Eq. �12�, which is expressed in
the Cartesian coordinate as

�2�̄d

� x̄2 +
�2�̄d

� ȳ2 = 0. �15�

The dimensionless boundary conditions can be rewritten as

y

f�

Channel center line
0E 2H

x

aH

bH

Dielectric block

d�

� � � � � � � � � � � � � � � � � � � �
� �x sF V � �xF sV

Dielectric block

o� � � � � � � � � � � � � � � � � � � �

FIG. 3. Schematic of two symmetric polarizable dielectric
blocks embedded in the walls of an infinitely long insulating slit
microchannel. After application of an external electric field E0, the
dielectric block is polarized so that the left-hand side of the object’s
surface acquires negative surface charges and the right-hand side of
its surface acquires positive surface charges. In order to maintain
the electrical neutrality in the entire system, the net charge density
in the EDL near the left-hand side of the surface should be positive
�	e�0� and the net charge density in the EDL near the right-hand
side of the surface should be negative �	e�0�. Obviously, the in-
teraction of the external electric field and these two charge densities
generates two electric body forces Fx �=	eE0� �with opposite direc-
tions inside the EDL�, thereby resulting in two Smoluchowski slip
velocities Vs �with opposite directions�, which are responsible for
the flow patterns generated above the dielectric block surface.
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�̄d�ȳ=0 + ��d

� f

�D

H

��̄d

� ȳ
�

ȳ=0

= − x̄ + �̄d0, �16a�

� ��̄d

� ȳ
�

ȳ=−b

= 0 � ��̄d

� x̄
�

x̄=−a/2
= 0 � ��̄d

� x̄
�

x̄=a/2
= 0.

�16b�

Without otherwise specification, the other potentials and geo-
metric dimensions are also scaled by E0H and H, respec-
tively. Using the separation of variables method, we can
show that the electric potential inside the polarizable dielec-
tric block takes the form

�̄d�x̄, ȳ� = �̄d0 + 	
n=1




�Ane�nȳ + Bne−�nȳ�cos
�n�x̄ +
a

2
� ,

�17�

where the coefficient An and Bn are given by

An =
2�1 − �− 1�n�

a�n
2

e2�nb

�1 − �n� + �1 + �n�e2�nb , �18a�

Bn =
2�1 − �− 1�n�

a�n
2

1

�1 − �n� + �1 + �n�e2�nb . �18b�

Here  is a dimensionless parameter defined as �22�

 =
�d/� f

H/�D
, �19�

which physically characterizes the relative importance of the
associated electrical properties ��d /� f� and the electrokinetic
channel size �H /�D�. The dimensionless parameter  may
also be viewed as a ratio of capacitances: namely, the ratio of
the block capacitance �d /H to the double-layer capacitance
� f /�D. The physical interpretation is that for an ideally po-
larizable dielectric →
 �i.e., a conductor with infinite ca-
pacitance� there is zero potential dropped over the dielectric
and hence all potential is dropped over the double layer,
giving the maximal induced zeta potential and thus ICEK
phenomena. For a dielectric with finite �d, then  is finite
and hence some potential is dropped across the dielectric,
thereby reducing the induced zeta potential and hence ICEK
phenomena. The eigenvalues �n are determined from

�n =
n�

a
n = 1,2,3. . . �20�

As mentioned early, the total zeta potential �̄d on a polariz-
able dielectric surface can be found as the difference be-
tween the potential on the polarizable dielectric surface and
the potential at the outer edge of the EDL. Furthermore, the

total zeta potential can be decomposed into two parts: �i� �̄d0

due to the natural surface charges and �ii� �̄di due to the
induced charges, and thus is given by

�̄d = �̄d�ȳ=0 − �̄ f�ȳ=�D/H = �̄d0 + �̄di, �21�

where �̄di can be determined with aid of Eq. �17� as

�̄di = − �
��̄d

� ȳ
�

ȳ=0

= − 	
n=1




�n�An − Bn�cos
�n�x̄ +
a

2
� .

�22�

For completely insulating blocks �i.e., =0�, it can be
readily shown from Eq. �22� that the induced zeta potential

�̄di is zero, and thus the zeta potential on the electrically

insulating block surface contains �̄d0 only. This is the case for
the classical linear electrokinetic phenomena with natural
fixed charges. On the other hand, for perfectly conducting �or
polarizable� blocks �i.e., →
�, it also can be shown that
Eq. �22� can be simplified to

�̄di = 	
n=1



2��− 1�n − 1�

a�n
2 cos
�n�x̄ +

a

2
� . �23�

Note that the right-hand side of Eq. �23� in fact is the Fourier
series expansion of the function x̄. Hence, we can obtain

�̄di= x̄=−�̄ f. This result is exactly the same as the analytical
result of Squires and Bazant �5� for perfectly polarizable sur-
faces.

III. FLOW FIELD OF ICEO IN A SLIT MICROCHANNEL
EMBEDDED WITH TWO POLARIZABLE

DIELECTRIC BLOCKS

With a dc electric field, E0 applied along the axial direc-
tion of an infinitely long slit microchannel as shown in Fig.
3, the electrolyte in the microchannel experiences an electro-
static body force 	eE0 �i.e., Lorentz force�, where 	e is the
net charge density due to the EDL of the channel. However,
as this electrostatic body force is present only within the
EDL which is very thin compared to the channel depth, the
flow can be considered as triggered by a moving boundary
wall. Therefore, the fully developed flow field for low Rey-
nolds number creeping flows �i.e., Re�1� of an incompress-
ible Newtonian fluid is two dimensional and is governed by
the continuity equation and the Stokes equation �23�,

� · V = 0, �24a�

− �p + ��2V = 0, �24b�

with an implicit slip boundary condition given by the
Helmholtz-Smoluchowski equation

V = −
�0� f�

�
E �25�

where V is the velocity vector expressed as V=uex+vey, E is
the electric field strength vector and it can be expressed as
E=E0ex, p is the hydrodynamic pressure, � is the zeta poten-
tial of the channel wall, and � is the dynamic viscosity of the
electrolyte solution. As shown in Fig. 3, along the channel
wall the zeta potential can be modeled by three segments: �i�
when x�−aH /2 and �ii� when x�aH /2, the wall is com-
pletely electrically insulating, and has a uniform natural zeta
potential of �0. �iii� When −aH /2�x�aH /2, the channel
wall is polarizable dielectric surface. Besides the conven-
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tional zeta potential �d0, there is an extra induced zeta poten-
tial �di under applied external electric field. It is evident that
the zeta potential exhibits step change at two conjunction
points: x=−aH /2 and x=aH /2, which will result in a jump
in the Helmholtz-Smoluchowski slip velocity along the mi-
crochannel according to Eq. �25�.

It can be readily shown that the governing equation Eqs.
�24� can be transformed into a biharmonic equation in terms
of the stream function �23�

�4� = 0, �26�

which can be further expressed in Cartesian coordinates as

�4�

�x4 + 2
�4�

�x2y2 +
�4�

�y4 = 0. �27�

The two velocity components can be expressed as two spatial
derivatives of the stream function

u =
��

�y
v = −

��

�x
. �28�

Assuming that the flow far away from the polarizable dielec-
tric patch is undisturbed, the magnitude of the velocity is
given by the Helmholtz-Smoluchowski velocity expressed
by

V
 = −
�0� f�0E0

�
. �29�

With aid of Eqs. �28� and �29�, the proper boundary condi-
tions can be prescribed for the stream function as

� ��

�x
�

y=0
= 0 �x� � 
 , �30a�

� ��

�y
�

y=0
= �−

�0� f�0E0

�
, x � −

aH

2
and x �

aH

2

−
�0� f�dE0

�
, −

aH

2
� x �

aH

2
, �

�30b�

� ��

�x
�

y=H

= 0 � �2�

�y2 �
y=H

= 0 �x� � 
 , �30c�

� → V
y as �x� → 
 , �30d�

where �d denotes the dimensional total zeta potential on the
polarizable dielectric surface and its dimensionless counter-

part is �̄d.
Because of linearity, we can decompose the total stream

function as

� = �
 + �d, �31�

where �
=V
y, which is the stream function for the far
away flow field. �d is the stream function due to the distur-
bance of the polarizable dielectric patch and it also satisfies
the biharmonic equation.

Nondimensionalizing all stream functions ��, �
, and
�d� with respect to V
H, we can write the governing equa-

tion for the induced stream function �d in dimensionless

form �̄d as

�4�̄d

� x̄4 + 2
�4�̄d

� x̄2ȳ2 +
�4�̄d

� ȳ4 = 0. �32�

The corresponding boundary conditions can be formulated as

� ��̄d

� x̄
�

ȳ=0

= 0 �x̄� � 
 , �33a�

� ��̄d

� ȳ
�

ȳ=0

= � 0, x̄ � −
a

2
and x̄ �

a

2

�̄d

�̄0

− 1, −
a

2
� x �

a

2
, � �33b�

� ��̄d

� x̄
�

ȳ=1

= 0 � �2�̄d

� ȳ2 �
ȳ=1

= 0 �x� � 
 , �33c�

�̄d → 0 as �x̄� → 
 . �33d�

Furthermore, with the Fourier transform �24�

�̄d
k�k, ȳ� =

1
�2�

�
−


+


�̄d�x̄, ȳ�e−ikx̄dx̄ , �34�

the biharmonic Eq. �32� can be converted into a fourth-order
ordinary differential equation,

d4�̄d
k

dȳ4 − 2k2d2�̄d
k

dȳ2 + k4�̄d
k = 0. �35�

The boundary conditions are also transformed into the Fou-
rier domain accordingly, and they become

�̄d
k�ȳ=0 = 0 � d�̄d

k

dȳ
�

ȳ=0

= Z�k� , �36a�

�̄d
k�ȳ=1 = 0 � d2�̄d

k

� ȳ2 �
ȳ=1

= 0, �36b�

where the auxiliary function Z�k� is defined by

Z�k� =
1

�2�
�

− a
2

+ a
2 � �̄d

�̄0

− 1�e−ikx̄dx . �37�

Then, substitution of Eqs. �21� and �22� into Eq. �37� gives
an explicit expression for Z�k�,

Z�k� = −
1

�2�



�̄0

	
n=1




�n�An − Bn�
ik�− eiak/2 + �− 1�ne−iak/2�

k2 − �n
2

+
1

�2�

�̄d0 − �̄0

�̄0

2 sin�ak

2
�

k
. �38�

The solution of the stream function in the k domain is
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�̄d
k�k, ȳ� = C1�k�sinh�kȳ� + C2�k�ȳ cosh�k�ȳ − 1�� , �39�

where two coefficients are determined by

C1�k� =
− 2

sinh�2k� − 2k
Z�k� , �40a�

C2�k� =
2 sinh�k�

sinh�2k� − 2k
Z�k� . �40b�

Finally, the induced stream function can be obtained by using
the inverse Fourier transform

�̄d�x̄, ȳ� =
1

�2�
�

−


+


�̄d
k�k, ȳ�eikx̄dk �41�

and the total stream function is constructed through Eq. �31�,

�̄�x̄, ȳ� = ȳ +
1

�2�
�

−


+


�̄d
k�k, ȳ�eikx̄dk . �42�

Likewise, the dimensionless velocity field is obtained by
substituting Eq. �42� into Eq. �28�,

ū�x̄, ȳ� = 1 +
1

�2�
�

−


+
 d�̄d
k�k, ȳ�
dy

eikx̄dk , �43a�

v̄�x̄, ȳ� = −
1

�2�
�

−


+


�ik��̄d
k�k, ȳ�eikx̄dk , �43b�

where ū=u /V
 and v̄=v /V
.
The remaining task is to evaluate the integrations with

respect to k. To obtain analytical solutions for the integra-
tions in Eqs. �42� and �43�, the residue theorem �25� is in-
voked, where the infinite integral of an function can be con-
verted to an summation of residues at all singularity points of
this function. Then we can, respectively, show that the solu-
tions for the dimensionless stream function, the horizontal
velocity component, and the vertical velocity component are

�̄�x̄, ȳ� = ȳ + �− 1�c�2�i	
m=1



Z�km�eikmx̄

cosh�2km� − 1

��− sinh�kmȳ� + sinh�km�ȳ cosh�km�ȳ − 1��� ,

�44a�

ū�x̄, ȳ� = 1 + �− 1�c�2�i	
m=1



Z�km�eikmx̄

cosh�2km� − 1

��− cosh�kmȳ�km + sinh�km�cosh�km�ȳ − 1��

+ km sinh�km�ȳ sinh�km�ȳ − 1��� , �44b�

v̄�x̄, ȳ� = �− 1�c�2�	
m=1



Z�km�kmeikmx̄

cosh�2km� − 1

��− sinh�kmȳ� + sinh�km�ȳ cosh�km�ȳ − 1��� ,

�44c�

where km is the complex root of the eigenfunction

sinh�2km�−2km=0. When x̄�0, c=0 and the summation is
taken for all km with positive imaginary part; when x̄�0, c
=1 and the summation is carried out for all km with negative
imaginary part. Table I provides the first five complex roots
of the above eigenfunction computed using MATHEMATICA 6.0

with high accuracy of 10−10. Moreover, as x̄→0 from both
domains �i.e., x̄�0 and x̄�0�, we can check that an identical
value is obtained, which ensures that the present analytical
solutions are continuous at x̄=0.

IV. RESULTS AND DISCUSSION

In this section, a special case study is presented to show
the basic flow patterns of ICEO flow above the polarizable
block embedded in the channel wall. Then by using the ana-
lytical solutions, parametric studies are carried out to exam-
ine the effects of the dielectric constant of the polarizable
dielectric block and the natural zeta potential of the electri-
cally insulting part of the channel wall on flow patterns of
ICEO flows In all calculations, the polarizable dielectric
blocks are assumed to have fixed dimensionless dimensions
of a=5 and b=5. Moreover, since the focus of this study is
placed on the induced-charge effects, the effect of the natural
surface charges on the polarizable dielectric block surface is

excluded by assuming �̄d0=0.

A. Basic flow patterns of ICEO flows

Since to our best knowledge, no other analytical solutions
of ICEO flows are available in this geometry in the literature,
a specific case study is conducted to present the basic flow
patterns of ICEO flows above the polarizable dielectric
block. In this special case, we consider a limiting case of 
→
 when the polarizable dielectric block is a perfect con-
ductor and thus has greatest polarizability. The dimensionless
natural zeta potential on both upstream and downstream of

the insulating microchannel �̄0 is set as −0.1, which may
represent a practical situation where E0=100 V /cm, H
=50 �m, and �0=−50 mV.

The calculated results are shown in Fig. 4 which includes
the horizontal velocity component ū, the vertical velocity
comment v̄, and the velocity vector field. It is seen that from
two figures in Fig. 4�a�, the fluid near the channel wall
moves to the block center �i.e., x̄=0 and ȳ=0� with large
velocity from two sides; however the velocity decreases as

TABLE I. First five eigenvalues determined form the eigenfunc-
tion, sinh�2km�−2km=0. Note: the complex conjugates of km are
another half of eigenvalues. Eigenvalues determined form the
eigenfunction, sinh�2km�−2km=0.

m km

1 �1.3843391414+3.7488381388i

2 �1.6761049424+6.9499798569i

3 �1.8583838398+10.1192588539i

4 �1.9915708201+13.2772736327i

5 �2.0966257352+16.4298705025i
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approaching to the block centerline �i.e., x̄=0�. Near the
block centerline, the flow changes its direction with flow
moving toward the block centerline near the channel wall
region �i.e., ȳ=0� and flow, leaving away from the block
centerline in the channel center line region �i.e., ȳ=1�. As
shown in Fig. 3, on the left side of the block surface �i.e.,
x̄�0�, the external electric field induces negative surface
charges �also negative induced zeta potential�; while on the
right side of the block �i.e., x̄�0�, the positive surface
charges �also positive induce zeta potential� are induced. Ac-
cordingly the resultant slip velocity is positive on the left
side and is negative on the right side of the block based on
the expression of the Smoluchowski velocity given by Eq.
�29�. Also, on the block surface, the magnitude of the hori-
zontal velocity component can reach twenty times larger than
that of the natural charge driven electro-osmotic flow in up-
stream and downstream of the insulating channels regions.
This is attributed to the fact that the Helmholtz-

Smoluchowski slip velocity on conducting surfaces is pro-
portional to E0

2 �26�, while the Smoluchowski slip velocity
driven by natural charges is just proportional to E0. Since the
flow rate is determined by the natural charge driven electro-
osmotic flow in the regions of insulating channel, in order to
fulfill the mass conservation there must be velocity reversal
on both sides of the channel centerline �i.e., ȳ=1�. For a
sufficiently large natural zeta potential on the insulating wall,
the ICEO flow over the polarizable blocks may not dominate
the electro-osmotic flow over the insulating walls; i.e., it is
only because the natural zeta is not too large that the domi-
nance of ICEO is observed. From the vertical velocity distri-
butions shown in Fig. 4�b�, it is noted that the fluid in a large
portion around the block centerline region moves upwards to
the channel centerline at a velocity comparable to the incom-
ing flow from infinity �x̄→ �
�. Above the two edges of the
polarizable block, the fluid flows down very fast to the po-
larizable surface. All these features are resulted from the fact

(b)(a)

(c)

FIG. 4. �Color online� Analytical solutions derived in the present study for �a� horizontal component of velocity ū, �b� vertical component
of velocity v̄, and �c� velocity vector field. Calculations are conducted for the ICEO flow above a perfectly polarizable �→
� block with

a=5, b=5, and the dimensionless natural zeta potential for the perfectly polarizable block �̄d0=0, and the insulating wall �̄0=−0.1.
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that there should be no net flow along y direction. Figure 4�c�
shows the analytical solution computed using Eqs. �44�,
which gives high resolution of the velocity vector field. It is
shown that there is a pair of counter-rotating vortices above
the polarizable surface. The generation of a vortices pair on a
planar polarizable surface was also conceptualized in �27�.

B. Parametric study of ICEO flow patterns

Figure 5 shows the effect of  on the flow patterns over
the bottom polarizable dielectric block. The normalized
stream function has a value of zero on the channel walls and
unit one at the channel centerline. The difference of the
stream function between two locations in the flow field rep-
resents the steady-state volumetric flow rate passing through
the cross-section line determined by theses two locations.
Since there exists a uniform velocity profile at both upstream
and downstream of the channel, the stream function should

be linearly proportional to y and the stream lines are exactly
in parallel with x axis in the two insulating regions of the
channel. Showing in Fig. 5�a� corresponds to the case of 
=0, indicating that the block is not polarizable. Furthermore,
with the assumption of no natural surface charges on the
block surface, �d0=0, no driving force is present for the fluid
over the block. Hence, no slip boundary condition on the
block surface causes velocity profile to exhibit a parabolic
shape and the stream function depends on y3, which explains
the stream line distributions above the dielectric surface
shown in Fig. 5�a�. As  increases, the dielectric block be-
comes polarizable. Then, a small clockwise vortex is formed
above the right portion of the polarizable dielectric surface as
shown in Fig. 5�b�. With such magnitude of , the induced
zeta potential on the left portion of the block is of the same
order and the same sign as the natural zeta potential on the
insulating channel wall. The resultant two Helmholtz-
Smoluchowski slip velocities on the left portion of the polar-

(b)

(a) (c)

(d)

FIG. 5. �Color online� Dimensionless stream function �̄ contour above a polarizable dielectric block for four different  values: �a� =0,
�b� =0.1, �c� =1, and �d� →
. Other parameters in the calculations are a=5, b=5, the dimensionless natural zeta potential for the

polarizable block �̄d0=0, and the insulating wall �̄0=−0.1.
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izable surface and the upstream insulting surfaces are of
similar magnitude and also in the same direction. Hence, the
flow speeds up near the polarizable dielectric block and
slows down near the channel centerline to fulfill the mass
conservation of fluid, but no circulating flow is developed on
the left portion of the block. However, on the right portion of
the polarizable dielectric surface, nonzero value of  always
produces a negative slip velocity �in opposite to the main
flow stream�, thereby giving rise to the development of a
vortex. As shown in Fig. 5�c�, further increasing  causes the
dielectric surface more polarizable to induce a larger zeta
potential on the left surface, which in turn produces a larger
slip velocity �compared to the slip velocity from the infi-
nitely far upstream flow in the insulating channel region�.
The large difference in these two slip velocities makes the
flow reversal occur over the left portion of the block. As a
result, a pair of two counter vortexes is formed. In the lim-
iting case of →
 as shown in Fig. 5�d�, the induced zeta

potential on the perfectly conductive surface is highest, and
so is the Helmholtz-Smoluchowski velocity, resulting in the
strongest pair of two counter-rotating vortices. At this situa-
tion, the liquid transportation in the vortices is several times
faster than that in the insulating channel regions. This can be
reflected from the values of stream function in the two vortex
centers, which are 3.70 and −3.30, respectively.

Figure 6 shows the effect of the dimensionless natural
zeta potential of the insulating microchannel walls on the
flow patterns above a perfectly conductive block. For the

case of �̄0=−0.3 shown in Fig. 6�a�, a pair of counter-rotating
vortices are formed due to a large difference between the
induced zeta potential on the block surface and the natural
zeta potential on insulating channel walls. When the natural
zeta potential increases �as indicated in Fig. 6�b��, the vortex
above the left side of the polarizable surface is gradually
distorted, even disappears as shown in Fig. 6�c�. In these two
cases, the velocity of the incoming flow from upstream has

(b)(a)

(c)

FIG. 6. �Color online� Dimensionless stream function �̄ contour above a perfectly polarizable block �→
� for three different �̄0 values:

�a� �̄0=−0.3, �b� �̄0=−0.5, and �c� �̄0=−1.0. Other parameters in the calculations are a=5, b=5, and the dimensionless natural zeta potential

for the polarizable block �̄d0=0.
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almost the same order of magnitude as the induced slip ve-
locity on the left side of the polarizable surface. Thus, similar
to the cases of Figs. 5�a� and 5�b�, the flow reversal near the
block centerline does not happen. However, on the right side
of the polarizable surface, there always exists a negative in-
duced Smoluchowski velocity, which counteracts with the
incoming flow from upstream of the channel. Thus a vortex
is present to fulfill the mass conservation. It is expected that
the vortex on the right side of the block surface can disap-

pear only when �̄0→−
.
It should be noted that generation of this kind of micro-

vortices is very useful. For example, the presence of vortical

flow structure can enhance micromixing—which is always a
challenging task because mixing in low Reynolds flows is
intrinsically poor. Additionally, pumping and/or separating
bioparticles �28–30� are also other potential applications.
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